If it's not what You are looking for type in the equation solver your own equation and let us solve it.
24x^2-4x=140
We move all terms to the left:
24x^2-4x-(140)=0
a = 24; b = -4; c = -140;
Δ = b2-4ac
Δ = -42-4·24·(-140)
Δ = 13456
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{13456}=116$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-4)-116}{2*24}=\frac{-112}{48} =-2+1/3 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-4)+116}{2*24}=\frac{120}{48} =2+1/2 $
| 2z-z=16 | | 5x+x+9=21 | | -176=3-7(5x+2)+2x | | 4/312a+8)=31.2 | | 32+2+3x=90 | | 0.638x^2+6.671x+627.619=840,000 | | 11x+4=6x+19 | | 8y-4y-7=74.56 | | –16t=–784 | | -6+10k=84 | | -6-10k=84 | | 0.75=8x | | -4=-10-2x | | 5x=230x= | | 3x+x+7=27 | | u−–340=599 | | -3(y+3)=3y-8+3(4y+5) | | -1.5(x-3)-0.75(x+4)=x-63.5 | | 8(-x+1)=16 | | 9y-5y-11=41.28 | | -1-a=18 | | 70000/1100=x/1400 | | (6x+2)+(8x+6)=180 | | 6-x-8=4-3x | | -186=m-790 | | 4(n)=9 | | 125k^2-45=0 | | (3v/4)+3=7v/10 | | 125k^2-52=0 | | 4(3x+7)−6(4x−5)=12x+3(2x−7) | | d+14=1,000 | | 15^2=r^2+(9+r)^2 |